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Abstract—To handle the growing flood of malware, security
vendors and analysts rely on tools that automatically identify
and analyze malicious code. Current systems for automated
malware analysis typically follow a dynamic approach, ex-
ecuting an unknown program in a controlled environment
(sandbox) and recording its runtime behavior. Since dynamic
analysis platforms directly run malicious code, they are resilient
to popular malware defense techniques such as packing and
code obfuscation. Unfortunately, in many cases, only a small
subset of all possible malicious behaviors is observed within the
short time frame that a malware sample is executed. To mitigate
this issue, previous work introduced techniques such as multi-
path or forced execution to increase the coverage of dynamic
malware analysis. Unfortunately, using these techniques is
potentially expensive, as the number of paths that require
analysis can grow exponentially.

In this paper, we propose REANIMATOR, a novel solution to
determine the capabilities (malicious functionality) of malware
programs. Our solution is based on the insight that we can
leverage behavior observed while dynamically executing a
specific malware sample to identify similar functionality in
other programs. More precisely, when we observe malicious
actions during dynamic analysis, we automatically extract and
model the parts of the malware binary that are responsible
for this behavior. We then leverage these models to check
whether similar code is present in other samples. This allows
us to statically identify dormant functionality (functionality
that is not observed during dynamic analysis) in malicious
programs. We evaluate our approach on thousands of real-
world malware samples, and we show that our system is
successful in identifying additional, malicious functionality. As
a result, our approach can significantly improve the coverage
of malware analysis results.

I. INTRODUCTION

Malware is a significant problem and the root cause for
many security threats on the Internet. For each new malware
binary that is discovered, it is important to understand its
malicious capabilities, its propagation vectors, and its impact
on the local system. This is necessary to determine the type
and severity of the threat that the malware poses. Also, this
information is valuable to create detection signatures and
removal procedures. Of course, given the sheer volume of

new samples that appear every day, obtaining a preliminary
understanding of the capabilities of a malware binary re-
quires the use of automated analysis systems.

Currently, dynamic analysis tools (such as Norman Sand-
box, Anubis [1], and CWSandbox [2]) are the most popular
choice when performing automated malware analysis. These
tools run the binary under inspection in a controlled environ-
ment (a sandbox) and monitor its runtime behavior, typically
by recording the Windows API library and the operating
system calls, including arguments, that the program invokes.
The advantage of dynamic analysis techniques is that the ac-
tions of a malware sample can be observed directly, without
complications due to runtime packing or code obfuscation.

Although useful in practice, dynamic techniques are not
without limitations. The most significant issue is that a
dynamic analysis run is unlikely to reveal the entire range of
capabilities of a given binary. The reason is that the analysis
can only observe behaviors for which the corresponding
code is actually executed. In contrast, many malware pro-
grams include triggers that ensure that certain functions are
invoked only when particular environmental or temporal
conditions are satisfied. Common examples are bot programs
that wait for external input from their command and control
servers, or malware programs that execute their malicious
payload only before (or after) a certain date.

Previous research [3]–[5] has recognized the problem that
dynamic techniques suffer from limited coverage. The pro-
posed solutions mainly revolve around the idea of increasing
the number of paths that are dynamically explored. To this
end, analysis systems execute a binary multiple times. For
each run, such systems either provide different inputs that
invert the outcomes of certain conditional branches (possible
triggers) [3], [4], or simply force the execution along a
different path [5]. In both cases, additional code can be
reached, potentially revealing previously-unseen behavior.

Unfortunately, systems that explore multiple execution
paths have to deal with the path explosion problem. Path
explosion occurs because, for each interesting branch in the



program, the analysis has to follow two successor paths.
This leads to an exponential growth in the overall number
of paths that need to be explored. Various heuristics are
used to first select more promising continuations. However,
these heuristics rarely achieve full code coverage. Thus,
even though multi-path analysis can increase the number of
behaviors that are observed during a dynamic analysis run, it
is unlikely that the entire code is executed. Moreover, multi-
path analysis is costly, which is a significant limitation when
considering the tens of thousands of samples that need to be
analyzed daily.

In this paper, we propose REANIMATOR, a novel approach
to identify dormant behaviors (behaviors that are not ob-
served during dynamic analysis) in malware binaries. Our
approach exploits the fact that many malware samples share
the same code base, or at least, parts of their code. This is
due to the fact that many samples are just re-packaged, poly-
morphic variants of the same malware program. Moreover,
as previous studies have shown [6], copying and pasting is
a common practice in software development, and, certainly,
malware programmers are no exception.

The basic approach of REANIMATOR is the following:
for every malware sample that is examined by a dynamic
malware analysis system, we check its runtime actions for
the presence of certain interesting, high-level behaviors.
These behaviors are expressed in the context of system calls
and Windows API functions, and they represent actions such
as packet sniffing, or terminating anti-virus processes. For
each behavior that is observed, we automatically locate the
code of the binary that is responsible for this behavior. It is
important that the located code is accurate; that is, the iden-
tified code should be directly responsible for the observed
behavior, and not contain unrelated helper functions, such
as library routines. Based on the identified code regions, we
create a model that captures structural information of this
code. Using these models, we can then check other binaries
for the presence of similar code. This is done by statically
examining the unpacked body of a malware binary. When
a model matches, we assume that the malware program
contains functionality that implements the corresponding
behavior.

We performed empirical experiments to demonstrate the
accuracy of our system by comparing it with the results of
a source-code-level plagiarism detection tool. Furthermore,
we tested our system on large, real-world malware datasets.
Our results show that REANIMATOR can successfully detect
dormant functionality and significantly increase the coverage
of dynamic analysis techniques.

The main contributions of this paper are the following:

• We introduce a novel technique to automatically iden-
tify and model code regions in binaries that are directly
responsible for specific runtime behaviors.

• We present a system that leverages models to stat-
ically check unknown programs for the presence of
previously-seen, malicious functionality.

• Our experimental evaluation demonstrates that our sys-
tem successfully finds dormant behaviors in malware
samples that are not discovered by a dynamic malware
analysis tool.

II. SYSTEM GOALS AND APPROACH

The goal of REANIMATOR is to improve the quality of
the results delivered by automated malware analysis sys-
tems. In particular, we address a key limitation of dynamic
malware analysis platforms, which can only examine code
paths that are actually executed. To do this, we statically
search a malware binary for code that was not run during
dynamic analysis but that implements specific functionality
that is of interest to a malware analyst. Clearly, the concept
of statically searching a program for code fragments that
indicate malicious behaviors is not novel per se. However,
our approach offers a combination of two salient properties
that improve significantly over previous work. More pre-
cisely, our techniques enable us to automatically generate
functionality-aware models of binary code.

Automated model generation. The ability to automatically
extract models is important, because it removes the need for
tedious and time consuming manual analysis, and scales to
the large volume of malware samples that are discovered
on a daily basis. Previous work on automated signature (or,
more generally, model) generation resulted in a number of
systems that extract byte strings [7], token sequences [8],
or control flow graphs [9] to identify malware binaries.
Fundamentally, all these systems share the same underlying
mechanism: They search for bytes, instructions, or subgraphs
that frequently appear in a set of malicious programs (or
execution traces) while, at the same time, they do not appear
in legitimate programs (or traces). This basic approach is
often successful in automatically extracting models that are
able to (statically) classify an unknown program as malicious
or benign. However, such models carry little additional
semantic information. In particular, it is typically unclear
whether a generated model captures some core malware
behavior or simply represents a program artifact or auxiliary
functionality. This is a serious limitation when such models
are deployed in an automated malware analysis system.
The reason is that it is often clear that a program under
examination is malicious (e.g., because it was collected by
a honeypot as the payload of an exploit), but it is not clear
which set of functionalities this program implements.

Functionality-aware models. To identify specific malware
behaviors, one requires models that are functionality-aware.
That is, these models need to be equipped with semantic
information that indicates the presence of specific, malicious
functionality (e.g., the fact that a malware sends spam,



monitors keystrokes, or starts a web server to provide
backdoor access to a compromised host). So far, efforts
to build functionality-aware models relied on human ana-
lysts. For instance, previous work has proposed semantics-
aware code templates [10] and malware blueprints [11].
Such models can precisely characterize code snippets that
implement suspicious functionality, such as unpacking or
sending spam mails. However, while code templates and
malware blueprints are robust to minor code changes and
obfuscation, they are nonetheless specific to one concrete
way in which a high-level behavior is implemented. We call
a piece of code that implements a malicious behavior in one
specific way an instantiation of this behavior. Of course, it is
common that members of a certain malware family share the
same instantiation of a particular behavior. Moreover, code
sharing makes it likely that the same instantiation can be
found across several different malware families. However, it
is necessary to manually develop a different code template
or blueprint for each new behavior instantiation that is
identified. Clearly, this is undesirable, given the massive
volume of novel malware that is encountered in the wild.

The ability of REANIMATOR to generate functionality-
aware models enables us to statically explore malware bina-
ries for instantiations of specific behaviors. This allows us
to accurately recognize malicious program capabilities, even
when the corresponding code was not executed, addressing
an important limitation of dynamic analysis systems. The
ability to extract models automatically allows us to cope
with the large number of malware samples that need to be
analyzed. In addition, it is faster for our system to automat-
ically generate a model for a newly-identified instantiation
of a behavior than for a malware author to manually modify
the code to create this instantiation. This is an important
advantage in the arms race between defenders and malware
authors.

Rationale of approach. As mentioned previously, the goal
of our system is to recognize the purpose of code that is not
executed during dynamic analysis (dormant functionality).
To this end, we exploit the fact that a dynamic malware
analysis platform receives, executes, and observes thousands
of malware programs every day. The basic insight is that,
when analyzing a malware sample, we can take advantage
of the wealth of information obtained from previous analysis
runs. More precisely, we can statically search a program for
the presence of a code fragment that is sufficiently similar
to code that (i) was executed during a previous, unrelated
analysis run and (ii) was found to be an instantiation of a
certain malware behavior. In this case, we know that the
program under examination contains functionality that can
produce this observed behavior.

It is important to note that the behaviors that can be ob-
served in a dynamic analysis environment vary significantly,
even for instances of the same malware family. For example,
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Figure 1. An overview of the REANIMATOR workflow.

depending on the availability of the command and control
(C&C) server or the currently-advertised command, a bot
will invoke different payload routines (e.g., the bot might
scan, start a proxy server, send spam, or do nothing). Thus,
frequently, a single dynamic analysis run only reveals a small
portion of the entire set of behaviors that a malware program
could exhibit. With REANIMATOR, we can automatically
generate a model that captures the code that is responsible
for the observed behavior. As a result, each execution of
a binary contributes a piece to a global knowledge base
that stores different instantiations for different behaviors.
This knowledge base can then be used to discover dormant
functionality in other malware samples.

III. SYSTEM OVERVIEW

REANIMATOR works in three phases, as shown in Fig-
ure 1. The first two phases are responsible for generating
functionality-aware models for different behaviors. The last
phase uses previously constructed models to check for
dormant behaviors. The following paragraphs outline the
three phases in more detail.

A. Dynamic Behavior Identification

In the first phase, a malware binary is executed in an
instrumented, dynamic analysis environment. For this, we
obtained access to Anubis [1], a sandbox that is built on
top of the whole-system emulator Qemu. Anubis records
the invocations of a large set of security-relevant system
calls and Windows API functions. In addition, the system
uses taint analysis to track data flow dependencies between
system and function call arguments.

Based on the output of Anubis, we use a set of specifi-
cations to identify different types of interesting, security-
relevant behaviors that a malware binary has exhibited
during the dynamic analysis. We call such externally-visible,
security-relevant behaviors that are observed during dynamic
analysis malware phenotypes. Examples of phenotypes in-
clude sending spam, launching attacks, installing a key-
board logger, and performing password sniffing. To write
behavioral specifications for different phenotypes, we build
upon previous work that has introduced languages to express



specific malware behavior with the help of graphs [12] or
automata [13], [14]. Both approaches use as input a trace of
system calls observed during dynamic analysis, information
that is readily available in the Anubis output.

For our work, we use rules that describe a malware
phenotype in terms of the required system or API calls, their
arguments, and the data flows between these arguments. This
is very similar to malspecs [12]. For instance, we detect
that a malware program is sending spam by looking for
outgoing mail traffic on TCP port 25. Such activity is, by
assumption, malicious because Anubis does not support user
interaction, and it is very unlikely that a benign program
needs to send email without user approval. Similarly, we
can detect a network-based attack by matching the data that
is provided to the network send API call against network
intrusion detection signatures. Port scan or denial of service
attacks are captured by measuring the frequency of (failed)
outgoing connection attempts. Detection of other behaviors
requires us to take advantage of data flow information. As
an example, a malware “dropper” (or update) behavior is
characterized as a data flow from a network socket to a file
together with the fact that this file is later executed. In total,
we have manually developed nine specifications of high-
level behaviors that cover common malware activity. These
behaviors are discussed in more detail in Section V. Of
course, if needed, the set of patterns can be easily extended
to cover additional phenotypes.

The astute reader might wonder why we consider it
reasonable to manually write specifications for dynamic
behaviors (phenotypes) when we have previously stated that
automation is necessary for generating functionality-aware
models. The reason is that specifications that operate on
dynamic analysis output can capture behavior at a high level
of abstraction. Hence, they are much easier to develop than
models that operate on static binary code. This is because
with dynamic analysis, one has concrete outputs or events
that a specification can be applied to. For example, it is rel-
atively straightforward to identify spam activity by checking
for network traffic to port 25 that contains SMTP keywords.
On the other hand, it is significantly more difficult to model
binary code that is capable of opening a network connection
to port 25 and sending out data that conforms to the SMTP
specification. Moreover, the same dynamic output can be
achieved in many different ways. That is, a single phenotype
can be implemented by many different code instantiations,
each of which might need to be modeled explicitly. Of
course, specifications that operate on dynamic output cannot,
on their own, achieve REANIMATOR’s main goal, which is
precisely to identify those (dormant) behaviors that are not
executed during dynamic analysis.

Whenever we identify a phenotype B during dynamic
analysis, we mark all system calls that are directly related to
B. For example, assume that we recognize that a malware
sample opens a network connection and sends out a spam

mail (by checking that this connection contains SMTP traffic
and has destination port 25). In this case, we mark the system
call that is responsible for opening the socket (that belongs
to the network connection over which the mail was sent),
as well as all system calls that write out the mail (spam)
data. Similarly, for network sniffing, we would mark the
system call that is responsible for opening a promiscuous-
mode socket, and all system calls that receive data from
this socket. We define the system calls that are marked as
related to behavior B the relevant system calls for B, and
we denote this set as RB . The set of all relevant system calls
R = {RB},∀B observed during the dynamic analysis run,
serve as the starting point for the next phase.

B. Extracting Genotype Models

In the second phase, the goal is to locate the part of the
binary that is directly responsible for a certain phenotype
that was witnessed during the previous dynamic analysis
phase. We call the code that is responsible for a particular
phenotype a genotype for this behavior. Once we have
located a genotype, we can build a model for it. The basic
idea is that a genotype model can then be leveraged to search
for similar code in other binaries.

A main challenge, and a core contribution of this paper,
is to develop techniques to find and model genotypes that
correspond to behaviors that are seen during a dynamic
analysis run. It is important that these genotype models
are precise, i.e., that they capture only code that is directly
responsible for malicious behavior. In particular, a model
should not contain parts of shared utility or library routines
that are also used by other functionality. Moreover, genotype
models should be complete, i.e., they should contain the
entire code that is responsible for a particular behavior and
not only a fragment. Imprecise or incomplete models can
lead to both false negatives or false positives. For example,
when a model contains unrelated code, it is possible that this
fragment accidentally matches benign code (false positive).

As mentioned previously, the starting point for generating
a genotype model is the set of relevant system calls RB
that the previous phase associates with a certain malicious
behavior B. We first use a program slicing step to identify all
instructions that contribute to the input parameters of these
system calls, as well as instructions that operate on their
output parameters. Typically, the resulting program slices
are neither precise nor complete. Thus, we use a subsequent
filtering step to remove those parts that are not directly re-
lated to the observed behavior. Finally, we use a germination
step to extend the slice to include parts of relevant code that
were missed by the initial program slicing step. Typically,
these parts are related to instructions that do not directly
operate on system call input or output data, but that set
up a loop or maintain the program stack. Moreover, the
germination step can also include alternative code paths that
are part of the dormant functionality but were not executed



during the dynamic analysis run. This typically increases the
completeness of our genotype model by including code that
handles special cases or error conditions that did not occur
during the dynamic analysis.

Note that a genotype represents only one instantiation of
a particular phenotype. That is, a malware binary might
possess a dormant functionality, but our genotype models
do not recognize this functionality because the malware
binary implements this functionality in a different way
(i.e., it has a different genotype for the same phenotype).
However, as our empirical results demonstrate, polymorphic
variants and code reuse are common and lead to a situation
where malware binaries share a significant amount of code.
Moreover, whenever a new implementation of a behavior
is observed in our sandbox, the system can automatically
generate a corresponding genotype model.

C. Finding dormant functionality

Once we have generated a set of genotype models asso-
ciated with different malicious behaviors, the third and last
step is to use such models to check binaries for dormant
functionality. To this end, we statically disassemble an
unpacked sample and check for the presence of previously-
modeled genotypes. When a code region is found that
matches one of our models, we report that this sample con-
tains a dormant functionality that implements the behavior
associated with the matching genotype.

Since we use static analysis to identify dormant code
in binaries, we need to take into account runtime packing
and code obfuscation. To handle packed binaries, we use a
generic unpacking technique similar to previous solutions
such as Renovo [15] and OmniUnpack [16]. In general,
we envision to use REANIMATOR in combination with a
dynamic analysis tool such as Anubis. Thus, it is easy
and effective to take a memory snapshot at the end of the
dynamic analysis run. Then, we can perform the search for
dormant functionality on this unpacked snapshot. The ro-
bustness of the system against code obfuscation depends on
the concrete implementation choice for the genotype models.
As shown in Section V, our current models, which rely on
structural information of the binary code, work well and
can tolerate differences in the program source code, as well
as changes that are the result of different compiler settings
or compiler versions. When more robustness is required,
one could fall back to semantics-aware code templates or
blueprints, although such models incur significantly higher
performance costs.

IV. SYSTEM DETAILS

In this section, we discuss in more detail our approach to
generate genotype models for phenotypes that are identified
during dynamic analysis. Then, we discuss how these models
can be used to detect dormant functionality.

A. Genotype Models

As mentioned previously, a genotype is a part of a
malware program that is responsible for a particular runtime
behavior. Thus, genotype models need to be able to charac-
terize binary code. This can be achieved in different ways.
On one end of the spectrum, a model could be implemented
as a string of bytes or a sequence of instructions that covers
an interesting code section. While such models are fast when
searching for dormant functionality, they are very specific.
Thus, even minor changes in the malware binary would
cause these models to miss relevant code. On the other hand,
one could attempt to extract generalized code templates
(such as the ones proposed in [10], [11]). While quite robust
to semantics-preserving code changes, the detection process
using these models is very costly.

For this work, we leverage the techniques proposed in [9]
and model code as its corresponding colored control flow
graph (CFG). A CFG is a directed graph where nodes are
basic blocks, and an edge from node u to v represents a
possible control flow (such as a jump or branch) from u to
v. The nodes of the CFG we use are colored based on the
classes of instructions that are present in the corresponding
basic blocks. Instruction classes, as defined in [9], are, for
example, “arithmetic,” “logic,” or “data transfer” operations.

CFGs have been used in the past to find similarities
between polymorphic worms and malware samples. Also,
they have a number of properties that make them particularly
useful in our setting. First, focusing on the structure of code
instead of instruction sequences makes models robust to
simple code insertion and deletion, and to certain classes of
code modifications such as register renaming or instruction
substitution. Second, using proper optimizations [9], it is
fast to search malware programs for code that matches
previously-constructed models.

In general, two genotypes are considered similar when
their respective CFGs share at least one isomorphic subgraph
that is sufficiently large (it has at least k nodes – as in [9], we
use k = 10). Thus, given a genotype, modeled as a colored
CFG G, the problem of finding this genotype in a malware
binary is reduced to finding an isomorphic subgraph of size
k that is present both in G and in the binary under analysis.
Since this is an NP-complete decision problem, previous
work [9] introduced an efficient, approximate algorithm.
This algorithm generates a subset of all possible k-node sub-
graphs of G and normalizes them. Each normalized k-node
subgraph then serves as a succinct fingerprint of the code
region that is modeled. For performance reasons, a hash of
the subgraph’s normalized representation is typically used.
In other words, a genotype model is not the colored CFG
itself, but a set of fingerprints that represent it. To search
a binary for the presence of a particular genotype, only the
fingerprints are used. When one or more fingerprints match,



then we assume that the binary contains the corresponding
genotype.

B. Genotype Model Extraction

The goal of the genotype model extraction phase is to
map an observed, dynamic behavior (a phenotype) to the
code that implements this behavior (the genotype). Once
this code is located, we can extract its CFG and generate the
corresponding fingerprints. These fingerprints then serve as
the genotype model for detecting dormant behaviors in other
binaries. The genotype model extraction process operates in
three steps, which are discussed in the following.

1) Program Slicing: The starting point for locating code
that is responsible for a particular behavior B is the set
of relevant system calls RB that the dynamic behavior
identification phase has found to be associated with B (as
discussed in Section III-A).

In a first step, we attempt to find all code that is “related”
to the systems calls r ∈ RB . More precisely, we attempt to
find all instructions that either (i) compute values that are
used as input parameters to these system calls, or that (ii)
process the output (return) values from these system calls.
The intuition is that when a relevant system call r is part
of an observed behavior, then the code responsible for this
behavior must either prepare and invoke this system call to
produce desired output or use it to obtain necessary inputs
that are later processed.

Interestingly, the concept of a set of instructions that are
related to a program point is similar to a program slice [17].
In general, a program slice consists of all program instruc-
tions that affect a given point of interest in the program. In
our case, we are interested in all instructions that affect a
point of interest through data flow dependencies. That is,
our slices only capture data flow between instructions, but
we do not include instructions that have an indirect effect
through control flow. The point of interest is a system call
r ∈ RB . Thus, a backward slice consists of all instructions
such that, for each instruction, there is a data flow from one
(or more) of its operands to one of the input arguments of
an interesting system call (case i). A forward slice, on the
other hand, is defined as all instructions for which there is
a data flow from the output of an interesting system call to
the instruction (case ii).

Forward slicing. For certain types of malicious behavior,
the malware program needs to process the output of system
calls. For example, a malware that implements packet sniff-
ing functionality has to process data that is received via a
promiscuous-mode socket, either to log it or to analyze it
for specific patterns that are of interest to the attacker (e.g.,
passwords or credit card numbers). As another example,
a program that implements a backdoor has to process the
output of the network-related system calls that are used to
receive commands from the attacker. To capture the code

(genotype) related to such classes of behavior B, we extract
a forward slice φ, starting from the output parameters of the
relevant system calls RB .

To compute a forward slice starting from the output of
a given system call, we leverage the taint information that
is provided by Anubis. In addition, we make use of the
instruction log that records each operation that the malware
under analysis has performed. More specifically, we taint the
output of the system call and then include into the slice φ
all instructions that operate on tainted data (i.e., at least one
source operand of an instruction is tainted). Furthermore, we
also propagate taint across system calls. That is, we taint
the output of system calls when at least one argument of the
system call was tainted.

When computing a forward slice, the analysis follows
a dynamic approach and directly operates on the instruc-
tions that were executed by the malware binary. Because
malicious code may be self-modifying, individual instruc-
tions cannot simply be identified by their address in the
program. Instead, we identify an instruction as a tuple
〈address, version number〉. While the program under
analysis is executing, we increment the version number of
an instruction whenever the memory at the corresponding
address was modified since the last time it was executed.
Backward slicing. While some malware functionality oper-
ates on the output of system calls, other behaviors are based
on computation that provides inputs to relevant system calls
r ∈ RB . For instance, in the case of a UDP flooding attack,
we are interested in how the packet payload and network-
related parameters (e.g., ports or destination IP addresses)
are determined. Or, in case of spam activity, the interesting
part of the program is the genotype that is responsible for
setting up a network connection and sending out mails.

To identify the code that is responsible for computing
the inputs to relevant system calls, we use a standard
dynamic slicing approach [17]. That is, we leverage the
instruction and memory access logs that Anubis produces
to follow define-use chains backwards, starting from the
input parameters of the system calls. More precisely, we start
to look for instructions that define the values that serve as
input to relevant systems calls, and we add these instructions
to the slice φ. For each of these instructions, we examine
their operands and determine the values that they use. For
each such value, we locate the instruction that defines it,
and include it into the slice as well. This process is then
continued recursively, adding to φ all instructions that define
(produce) inputs for instructions already in the slice.

For each system call r ∈ RB , we compute forward and
backwards slices φr,forward and φr,backwards. The output of
the program slicing step is the slice φ that is the union of
all forward and backwards slices:

φ =
⋃
r∈RB

(φr,forward ∪ φr,backwards).



Program 1 Example: Network sniffing

1 sw i t ch ( command ){
2 case X:
3 . . .
4 case s n i f f :� �
5 sock = socket ( . . . ) ;
6 i f ( sock == INVALID SOCKET)
7 e r r o r ( ) ;
8 bind( sock , . . . ) ;
9 WSAIoctl( sock , OPT PROMISCUOUS, . . . ) ;

10 whi le (recv( sock , b u f f e r , . . ) ) {
11 i p = ( IPHEADER ∗ ) b u f f e r ;
12 i f ( ip−>p r o t o == TCP){
13 p a c k e t = b u f f e r + s i z e o f (TCPHEADER ) ;
14 i f ( s t r s t r ( packe t , ” password ” ) != NULL){
15 w r i t e ( log , ” Got a password ! ” ) ;
16 w r i t e ( log , p a c k e t ) ;
17 }
18 }
19 }� �
20 }

Running example. As a running example to illustrate the
way in which genotype model generation works, consider
the code snippet shown in Program 1. This code snippet
shows a part of the main control loop of a bot. In particular,
we focus on one case statement that is executed when the
bot receives a “sniff” command. If the botmaster sends such
a command, the program first opens a socket in promiscuous
mode (Lines 5-9). Then, for each packet, the code checks
whether a TCP packet was received (Lines 11 and 12). If so,
the bot scans the packet payload for passwords (indicated by
the presence of the string password) and logs those that
are found (Lines 13-16).

When the code in the example is executed during dynamic
analysis, our system would recognize that the WSAIoctl
call is being used to put a socket in promiscuous mode.
This behavior is associated with “sniffing activity,” and
the dynamic behavior identification step would mark the
WSAIoctl call in Line 9 as relevant, together with all
other calls operating on the promiscuous socket sock; the
socket, bind, and recv calls in Lines 5, 8 and 10. The
corresponding genotype that we aim to identify and model
is the entire case statement (the code enclosed in the box),
but not the helper functions such as strstr.

For packet sniffing activity, the genotype extraction phase
first computes a forward and backward slice for all relevant
system calls. This includes into the slice Lines 5, 6, 8, 9
and 10 because they operate on the variable sock, which is
the result of the socket system call. Moreover, the system
includes the code in Lines 12, 14, and 16, because they
operate on the tainted data buffer returned by the call to
recv. Note that Lines 11 and 13 are not (yet) included,
because they only manipulate variables that point to tainted
data, but are not themselves tainted. Furthermore, Line 1
is not included in the backwards slice, because our slicing

approach takes into account only data flow, and not the effect
of control flow decisions.

2) Filtering: As discussed in the previous section, the
program slice φ contains all instructions that are connected
to relevant system calls by a data flow. However, it is
likely that φ contains code that is not directly related to
the malicious behavior that was observed. This occurs for
two main reasons.

First, when generating a forward slice from instructions
that operate on system call outputs (tainted data), it is often
the case that instructions are included that are part of general
purpose utility functions (e.g., string processing routines).
This is particularly critical for library functions that are
statically compiled into a binary, because models for such
functions will match against any code that makes use of the
same library.

A second reason why slices often contain code that is
not directly related to the observed malware behavior is
the fact that backward slices might lead back “too far”
in the program. That is, it is not immediately clear when
the analysis should stop to follow define-use chains. As
a result, slices frequently contain initialization code. Even
more problematic, when the malware program is unpacked
during runtime, the slice might even include the generic
code of the packer. Including such code into the genotype
is undesirable because the corresponding model potentially
matches all binaries that use the same unpacking routine
(which is clearly not related to a certain runtime behavior).

To address the problem of unrelated code that is part of the
program slices computed during the first step, we introduce
an additional filtering step. The goal of this filtering step is
to identify instructions that are not directly responsible for
a malicious behavior. To this end, we have developed the
following two techniques:

White-listing. The first technique uses white-listing to re-
move instructions from the slice φ that are not related
to behavior B. White-listing requires a set of white-listed
genotype models Ω = {ω}. Each white-listed genotype
model ω characterizes code that is not directly related
to a certain behavior B. For each ω, we perform model
matching against the program under analysis. The result of
model matching is a set of instructions Nω ⊆ N of the
malware program that successfully matched against ω. We
then remove all instructions from φ that appear in Nω .

To obtain a white-list for a malware program, we can
make use of the program itself. More precisely, given a
number of threads, processes, or distinct executions of a
program under analysis, we can include into a white-list for
B the genotype model of all the code that is executed by
threads or processes that did not perform behavior B. That
is, whenever a thread or process is run and does not exhibit
behavior B, we can include into the white-list for B all code
that was executed during this run.



It would also be possible to use “foreign” genotypes for
white-listing purposes (where a foreign genotype is derived
from programs other than the malware under analysis). For
instance, we could assemble a collection of genotype models
of standard library functions, or packing routines, and use it
to ensure that no such code is included in genotype models
of a malware sample. We did not use a foreign white-list in
our experiments. However, the results in Section V show that
REANIMATOR nonetheless achieved a high level of accuracy.

Finding exclusive instructions. The second technique relies
on identifying instructions that do not always operate on
tainted data. That is, we identify the set of instructions θ ⊆ φ
such that all instructions in θ operate on tainted data (output
from marked system calls) every time they are executed. We
call these instructions exclusive to the malware behavior.

The rationale behind exclusive instructions is that code
that is directly responsible for a particular behavior is
expected to always operate on data that is related to this
behavior. General purpose functions, on the other hand,
might also be invoked in other contexts. In those contexts,
these functions will operate on untainted data, and hence,
they will not be included in θ. For example, in the case
of packet sniffing, the general-purpose string routines are
very likely to be used also by code that is unrelated to
manipulating the sniffed packet payloads.

At this point, we could remove all instructions from a slice
φ that are not an element of θ. However, in certain cases, this
limits the possibility of the subsequent germination step to
discover additional, relevant instructions. Thus, we perform
the subsequent germination step on instructions in φ, and
use θ only at the end for final post-processing.

Running example. In the example shown in Program 1,
the initial slice would not only contain the instructions that
are part of the case statement, but also the code of utility
functions that are called with tainted data (such as strstr
in Line 14). Assuming that we have properly white-listed
this library routine, the corresponding instructions would
be directly removed from the slice. If this code was not
white-listed, it would be removed later. The reason is that it
likely does not contain exclusive instructions. In contrast, all
instructions in the slice that are part of the case statement
are exclusive (i.e., they are in θ), since they always operate
on tainted data.

3) Germination: A filtered slice φ contains instructions
that are directly related to an observed, malicious behavior.
However, a slice might be incomplete. In particular, a slice
might fail to include instructions that are part of a behavior,
simply because these instructions do not directly operate
on tainted data or because they are not part of define-use
chains. Such instructions typically perform auxiliary tasks,
for example, saving register values to the stack before a
function call, updating a loop counter variable, or performing

pointer arithmetic. Others affect the data flow only indirectly,
by influencing control flow decisions.

The goal of the germination step is to improve the
completeness of a genotype by expanding a slice φ to include
auxiliary instructions that are also part of the code directly
responsible for a behavior. At the same time, we do not want
to reduce the precision of a model by including unrelated
code.

The basic approach to do this is the following: We
consider an instruction as part of the code that implements
a behavior when this instruction cannot be executed without
executing at least one instruction that is part of φ. The
intuition behind this approach is that all instructions in a
slice are known to be directly related to a certain behavior.
Thus, operations that will only be executed together with
these directly-related instructions should also be considered
to be part of this behavior.
Algorithm. More formally, we consider a filtered slice φ to
be the initial genotype for the corresponding phenotype. In
a first step, we add all instructions d to the genotype that
are dominated by the slice φ. This is a variation of the well-
known concept of dominance in graphs. In the traditional
case, a node d is dominated by another node n when every
path from the start node to d must go through n. In our case,
we consider an instruction to be dominated by the slice φ
when every path from the start node (function entry point in
the CFG) to d goes through at least one instruction n ∈ φ
(but not necessarily the same n for all paths). In a second
step, we add all instructions p to the genotype that are post-
dominated by the slice φ. Again, this is an extension of the
traditional concept of post-dominance. In our case, we say
that instruction p is post-dominated by slice φ when all paths
to the exit nodes of the graph, starting at p, go through at
least one n ∈ φ. As desired, both dominated instructions d
and post-dominated instructions p cannot be executed unless
at least one instruction n ∈ φ is also executed.

To compute dominator and post-dominator relationships,
the CFG of the program is needed, and it can be built in
one of two ways. First, we can build a dynamic CFG from
the execution trace, which holds all instructions that were
executed during dynamic analysis. This CFG is accurate,
since it contains only instructions that were actually exe-
cuted by the binary under analysis. However, it might be
incomplete, since it does not cover program paths that were
not executed. To include such paths as well, one can build
the static CFG by performing an additional, static analysis
step that attempts to disassemble the non-executed regions.

In addition to the CFG itself, one requires its start and exit
nodes. Currently, we run our analysis on the intra-procedural
CFG. Thus, the start node of the graph is the entry point to
the function (a new function entry point is recorded when-
ever our dynamic analysis observes a call instruction). The
exit nodes of the graph correspond to return instructions.
This works well when operating on the static CFG. When



using a dynamic CFG, however, this approach often misses
exit nodes. The reason is that most exit nodes are never
executed during the dynamic analysis run. Thus, when using
a dynamic CFG, we add pseudo exit nodes to all targets of
conditional branches that were not executed during dynamic
analysis. We currently operate on intra-procedural CFGs
for performance and convenience reasons. When malware
authors decide to attack our technique, e.g., by splitting their
program into a large number of extremely small functions,
or by merging all functions into one, our approach can be
extended to work on the entire program CFG.

Algorithm 1 germinate()

Input: The CFG G = (N,E). The slice φ = {nφ}. The
function entry point ε and exit points χ.

Result: The extended slice ψ : {nφ} ⊆ {nψ} ⊆ N .
1: φ′ ← φ
2: repeat
3: n← |φ′|
4: H ← G[(N \ {nφ′})]
5: M ← mark reachable forward(H, ε)
6: φ′ ← φ′ ∪ (N \M)
7: H ← G[(N \ {nφ′})]
8: M ← mark reachable backwards(H,χ)
9: φ′ ← φ′ ∪ (N \M)

10: until |φ′| = n
11: ψ ← φ′

Based on either the dynamic or the static CFG G =
(N,E) (N is the set of instructions, and E the control
flow edges), the slice φ, a start node ε, and a set of
exit nodes χ, we then apply the algorithm germinate
(Algorithm 1). The goal of this algorithm is to find additional
instructions that should be added to the genotype. To this
end, the algorithm first locates and marks all instructions
nφ (instructions that are part of slice φ) in the program’s
CFG. Then, it uses graph reachability analysis to identify
the instructions that are dominated and post-dominated by
the slice φ. These instructions are added to φ. Since adding
instructions to a slice φ might increase its dominance and
post-dominance in the graph, the algorithm runs in a loop
until a fixpoint is reached (Lines 2, 3, and 10).

To find instructions that are dominated by the slice φ′,
the algorithm first removes the nodes that correspond to
instructions in φ′ from the graph. More formally, the algo-
rithm generates an induced subgraph H from the CFG G by
removing all nodes from G that are in φ′ (Line 4). Note that
a subgraph H is said to be induced if, for any pair of vertices
x and y of H , x→ y is an edge of H if and only if x→ y
is an edge of G. When the set of nodes S in H is a subset
of the nodes in G, then we can write H = G[S]. Then, on
the new graph H , starting from start node ε, the algorithm
marks all nodes that are still reachable from the start node,

following the forward edges (Line 5). All instructions that
could not be reached (i.e., all instructions N\M in the graph
that are not marked) must have been “cut off” from the start
node by the previously removed nodes. That is, there is no
path from the start node to an unmarked node that does not
“pass through” the slice φ. As a result, all instructions that
correspond to these unmarked nodes are added to the slice
(Line 6). A similar approach is used for the post-dominance
computation. The only difference is that the mark algorithm
starts at the exit nodes χ (Line 7) and follows control flow
edges in the opposite direction (backwards, in Line 8).

Model generation. Given the extended slice ψ, the next step
is to translate it into a corresponding genotype model. To
this end, the system proceeds in two steps. First, it splits the
subgraph G[ψ], induced by ψ on the program CFG G, into
maximal connected subgraphs G1, .., GJ . It then splits the
slice into the corresponding subsets ψ1, .., ψJ , where ψj is
the set of instructions corresponding to nodes of Gj . Clearly,
ψ =

⋃
ψj

In the second step, to filter possibly spurious instructions
that might have been added by the germination step, we
make use of the set of exclusive instructions θ (as introduced
in the previous Section IV-B2). More precisely, we discard
all the slices ψj that contain no instruction in θ. The final
slice is then ψfinal = {ψj |ψj ∩ θ 6= ∅}.

The genotype model γ is defined as the induced subgraph
γ = G[ψfinal].

Running example. The germination phase adds a number of
instructions (lines) to the genotype that were not previously
considered by the program slicing step. In particular, it adds
Lines 11, 13 and 15 (in Program 1), which are dominated
by instructions in the slice (for example, by Line 5). This
step does not, however, add any instructions outside of the
case statement. The reason is that there are paths from the
start of the function (and the switch statement) to other case
statements that do not traverse any instructions in the slice
associated with the sniff behavior.

Interestingly, when we use a dynamic CFG to perform the
germination step, then Line 7 would not be considered in
the genotype. The reason is that the error condition handled
by Line 7 never occurred, so this instruction was never
executed, and hence, would not appear in the dynamic CFG
at all. If, however, the system uses a static CFG, then this
line would be included.

C. Genotype Matching

The output of the previous step is a set of genotype models
γB , one for each observed phenotype B. Thus, the system
knows, for each genotype model, what the corresponding
behavior is. This information can be leveraged to search for
dormant functionality.

Initially, the genotype models must be prepared for effi-
cient searching. To this end, as mentioned in Section IV-A,



each genotype model, which is a graph, is translated into a
set of corresponding fingerprints.

To perform genotype matching and, hence, to identify dor-
mant functionality, an unknown binary is first disassembled,
and its CFG is extracted. Then, this CFG is searched for
the presence of fingerprints (as discussed in the context of
polymorphic worms in a previous paper [9]). Whenever a
fingerprint matches, we have found the genotype that this
fingerprint belongs do. Thus, we know that the malware
contains dormant functionality that is capable of producing
the runtime behavior that is associated with this genotype.

Since we perform disassembly and control flow extraction
of unknown malware samples, we need to overcome the
problem of packed executables (according to [18], more than
40% of the samples are packed with a known packer; a
number which is likely only a lower bound). To unpack
samples, we use a very simple but effective technique.
In existing generic unpackers [15], [19], a malware under
analysis is first executed in a dynamic malware analysis
environment. Since we already execute the analyzed code
in Anubis for several minutes, unpacking happens naturally.
At the end of the analysis run, we simply take a snapshot
of the memory content and perform analysis directly on this
dump. This allows us to not only report the results from
the dynamic analysis run, but also to report all dormant
functionality that was identified.

Our experience showed that this simple unpacking ap-
proach worked very well for the malware samples in our
evaluation dataset, and it is also sufficient for most contem-
porary malware that we have encountered. However, we are
aware that there are advanced packers that require the use
of alternative unpacking techniques [20], [21].

V. EVALUATION

The goal of the evaluation is to show that REANIMATOR
can extract accurate and robust genotype models for a variety
of phenotypes. Moreover, we want to demonstrate that
these models are capable of efficiently identifying dormant
functionality in real-world malware.

A. Genotype Model Extraction

Phenotypes. To be able to extract genotype models, it is fist
necessary to define appropriate phenotypes. To this end, we
first specified rules to detect nine phenotypes that correspond
to common malware behaviors. Although the following list
is clearly not exhaustive, we believe that it is sufficient to
demonstrate the flexibility of our approach.

• spam: send unsolicited email. This behavior is detected
as SMTP traffic at the network level.
• scan: perform a port scan. To detect this phenotype, we
rely on Anubis’ existing network-level portscan detection
heuristics.
• sniff: perform packet sniffing. This phenotype is detected
when a program opens a socket in promiscuous mode.

• keylog: log the keys that the user presses. This phenotype
is detected when a program invokes one of several Windows
API calls that can be used to register callbacks that receive
keyboard information.
• rpcbind: exploit a Windows DCE/RPC vulnerability over
the SMB/CIFS protocol. This is detected at the network
level, using appropriate intrusion detection (Snort) signa-
tures.
• killproc: kill a process (typically, an anti-virus process).
This phenotype is detected when an analyzed program uses
a Windows API call to terminate a process that it did not
spawn itself.
• backdoor: open a back-door. This phenotype is detected
when the analyzed program opens and listens on a TCP port.
• packetflood: simple denial-of-service. This phenotype is
detected when the malware sends more than a certain
number of packets per second to a single destination.
• drop: “drop” and execute a binary. This behavior is
detected when the taint analysis observes a data flow from
the network to a file, and this file is later executed.

Genotypes. Using the previously-defined phenotypes, we
executed the following four malware samples in our dynamic
analysis environment:

• rbot: This malware sample is a representative of a classic
IRC-based bot. The corresponding source code was available
to us. Therefore, we were able to force the bot to connect
to our own IRC server, and we instructed it to execute a
variety of actions.
• pushdo: Pushdo is a sophisticated, modern download-
er/dropper Trojan. It connects to a hard-coded list of IP
addresses over HTTP and attempts to download and install
additional components. We did not have access to Pushdo’s
source code. Hence, we started the program and allowed it
to connect to its command and control infrastructure.
• cutwail: Cutwail is a template-based spam engine that is
one of the typical payloads of the Pushdo dropper. Initially,
we did not have a sample of Cutwail, but we could use
Pushdo to download it and run it for us. For details on the
Pushdo/Cutwail botnet, we refer the interested reader to [22].
• allaple: Allaple [23] is a well-known polymorphic net-
work worm. When started, our variant performs a network
scan on TCP ports 135, 139 and 445. Then, it attempts to
compromise the services identified by the scan.

We selected these four malware samples because they
exhibit (or, in case of rbot, they could be instructed to
exhibit) a wide range of behaviors in the Anubis sandbox.
Also, these samples represent a good mix of a classic and
two more advanced bots and a well-known worm.

We then applied REANIMATOR to the executions of the
four malware samples, and automatically extracted ten geno-
type models. These models are shown in Table I. The table
also shows the size of the genotype that was captured by the
corresponding model, both in terms of lines of code (when



Table I
LINES OF CODE (WHERE AVAILABLE) AND NUMBER OF BASIC BLOCKS

OF GENOTYPE EXTRACTED IN (S)TATIC AND (D)YNAMIC MODE.

Genotype Sample Phenotype LoC Basic Blocks
S D

sniff rbot sniff 95 59 31
udpflood rbot packetflood 60 51 41
keylog rbot keylog 84 59 49
killproc rbot killproc 65 42 27
httpd rbot backdoor 392 302 236
simplespam rbot spam 37 27 26
drop pushdo drop n/a 150 126
spam cutwail spam n/a 532 290
scan allaple scan n/a 99 62
rpcbind allaple rpcbind n/a 333 133

Figure 2. Distribution of MOSS scores by percentage, along with the
number of matches generated by our genotype models.

source code was available) and in terms of basic blocks.
Note that the number of basic blocks is shown both for
the dynamic and the static CFG extraction approach used
during the germination step. As expected, the static approach
covers more code (i.e., regions that were not executed during
dynamic analysis). Also, it is interesting to observe that a
single phenotype (in this case, spam) can be implemented in
different ways, which results in different genotype models.

B. Genotype Model Accuracy

In the next step, we wanted to analyze how accurate
our extracted genotype models are. To this end, we first
examined whether REANIMATOR is successful in using
a particular genotype model to detect the corresponding
genotype in other malware binaries. For this analysis, we
could make use of a dataset of 208 bot programs that were
available to us as source code. This dataset was provided
by the authors of [24]. Many of the 208 bots are variants
of rbot, and indeed, we randomly chose one rbot program
from this dataset as one of the four malware sample used
for genotype model extraction.

Using the source code of this rbot sample, we manually
extracted code snippets that we considered to be responsible
for each of the six observed rbot phenotypes (shown in

Table I), one code snippet for each behavior. Then, we
checked the source of the remaining 207 bot programs for
code that is similar to these six code snippets. Of course,
even with source code available, manually checking for the
presence of similar code in hundreds of programs is a tedious
task. Therefore, we took advantage of MOSS [25], a free,
web-based service for plagiarism detection. MOSS is widely
used for detecting plagiarism in computer science classes,
and it allowed us to identify those samples that contain code
that is similar to one of the manually extracted code snippets.

At this point, we used REANIMATOR to match the six
genotype models generated for the single rbot instance
against the 207 remaining bot binaries. These binaries were
obtained by compiling each bot source code using Mi-
crosoft Visual Studio 2005. We then compared the matches
identified by REANIMATOR with the source code similarity
measurements obtained by MOSS. Of course, the hope is
that the matches that are independently produced by both
techniques have a high overlap. That is, we expect that
REANIMATOR reports a certain (dormant) functionality in
a malware binary whenever MOSS reports that the cor-
responding program source contains the code snippet that
implements this functionality (or, at least, code that is similar
to this snippet).

Figure 2 shows a comparison between the matches iden-
tified by REANIMATOR and the similarity scores produced
by MOSS. For each of the six behaviors j, and for each
of the 207 binaries i, MOSS produces a similarity score
that indicates the confidence that the code snippet that
implements behavior j is present in binary i. We call this
similarity score Mi,j . Figure 2 shows a histogram that
displays the distribution of the scores Mi,j . It can be seen
that many scores are very high, which confirms the previous
observation that the dataset contains many variants of rbot.

In addition to the similarity scores for MOSS, Figure 2
also contains the results for REANIMATOR. In particular,
whenever our technique finds a match for genotype model
j in binary i, we first check the similarity score that MOSS
reported for this combination, which is Mi,j . Then, we add
1 to the REANIMATOR results for the bin that corresponds
to this score. The intuition is that we expect that whenever
our technique reports a match, the corresponding similarity
score is high. In other words, we would expect that our
system reports a match whenever MOSS’ similarity score
is high (on the right side of the graph), and nothing when
the similarity score is low (on the left side of the graph).
The static and dynamic bars for REANIMATOR represent the
results achieved by using either a static or a dynamic CFG
during the germination step (as discussed in Section IV-B3).
For this dataset, the results are identical. However, as we
show, this is not the case on other datasets.

As one can see in Figure 2, REANIMATOR’s genotype
matching results are closely correlated with source code
similarity obtained from MOSS. On the right hand side,



where the MOSS similarity scores are high, genotype match-
ing is almost invariably successful. On the left hand side,
where MOSS produces a low score, there are almost no
REANIMATOR matches.

We then manually inspected those cases for which MOSS
and REANIMATOR reported different results. First, we
looked at instances where our technique detected a match,
but the similarity scores reported by MOSS were low (in-
dicating different code). In particular, we checked the code
where MOSS reported low scores (lower than 50%). We
found that in all five cases, REANIMATOR was correct. That
is, the sample did indeed implement the functionality that
REANIMATOR found. The low MOSS scores were caused
by the fact that large parts of the corresponding source code
had been modified, or re-implemented. However, enough of
the genotype had been preserved that REANIMATOR could
recognize it. We also inspected the 27 opposite cases where
MOSS reported a high similarity, but REANIMATOR did not
find a genotype model match. We found that, in 13 cases,
the implementation of the i-th phenotype was present in the
j-th bot’s source code, but not in its binary. The code was
excluded from the build process either at the compilation
stage (because of #ifdef directives), or at the linking
stage, because the linker decided not to include an object
that was not required. The remaining 14 cases were false
negatives, due to the fact that code was changed to an extent
that our models failed to detect the similarity.

Finally, we wanted to verify that the genotype models
produced by REANIMATOR do not match arbitrary binary
code. That is, we wanted to understand the risk of false
positives produced by our models. To this end, we used
our ten genotype models and applied them to a dataset that
consisted of 1,949 files found in the system32 directory
of a Windows XP installation. Of course, we do not expect
any of our genotypes to match on benign Windows program.
Indeed, no matches were found.

C. Robustness

In this section, we evaluate the effects of different
compilers and optimizations on REANIMATOR’s accuracy.
Specifically, we aim to test whether a genotype model
extracted from a binary can be successfully matched against
binaries that were compiled with different compiler versions
or optimization options. For this, we use the same dataset of
208 bot sources, and the same genotype models discussed
in the previous section.

As a first test, we re-compiled the bot sources using the
same compiler (Microsoft Visual Studio 2005), but with
different optimization and inlining options. The results are
summarized in Table II. The table shows that for all the
genotype models, except for simplespam, different compiler
options have a very limited effect on the REANIMATOR
results. The number of matching binaries are reduced by
less than 7%. The simplespam genotype model is more

brittle. This is because the rbot sample implements this
functionality in only 37 lines of code, as opposed to 60
to 392 lines for the other behaviors. Clearly, code re-use is
easier to detect when larger code fragments are involved.

For the second test, we re-compiled ten of the 208
bot samples using different versions of the Visual Studio
compiler, as well as the Intel C++ Compiler Professional
Edition 11.1. We restricted this test to ten samples because
we were not able to completely automate the compilation
process with different compilers. More precisely, we learned
that different compilers accept slightly different dialects of
C source code, and hence, source code needed to be adapted
to be accepted by a different compiler.

As can be seen in Table III, REANIMATOR is robust
to different compiler versions, but mostly fails to match
genotypes in binaries produced by a completely different
compiler. Nonetheless, our results compare favorably to the
state-of-the-art work on binary clone detection [26]. Results
from [26] show false negative rates of over 96% on identical
functions when simply changing compiler options.

While a malware author could still attempt to evade our
tool by re-compiling malware with different compilers, this
only allows him to generate a limited number of variants.
To correctly match against all samples, REANIMATOR would
simply need to generate a genotype model for each variant.

D. Genotype Matching Results

In this section, we discuss REANIMATOR’s effectiveness
on four real-world datasets:

• irc bots: This dataset consists of 10,238 binaries that
performed IRC traffic when analyzed in Anubis, and are,
therefore, likely to be IRC-based bot samples. Furthermore,
these samples were selected based on the output of the
SigBuster tool for not being packed with a known packer.
• packed bots: This dataset is similar to the irc bots
dataset. It consist of 4,523 binaries that perform IRC traffic
during Anubis analysis. SigBuster was able to recognize that
these samples are packed.
• pushdo: This dataset consists of 77 pushdo binaries. To
identify Pushdo, we relied on anti-virus signatures to select
25 samples. We also used a known, characteristic behavior
of the Pushdo sample observed during analysis in Anubis to
identify another 52 samples. Specifically, Pushdo samples
request updates by sending an HTTP query for a URL that
starts with the string /40E8.
• allaple: This dataset consists of 64 Allaple samples,
identified using anti-virus signatures.

Table IV shows the results of matching the six genotype
models extracted from the rbot sample against the two
datasets of IRC bots. To compare the coverage provided
by our tool with the results reported by dynamic analysis
approaches, we show, for each genotype, the detection
results for the corresponding phenotype based on a single



Table II
NUMBER OF SAMPLES (OUT OF 208) MATCHING EACH BEHAVIORAL MODEL IN (S)TATIC AND (D)YNAMIC MODE, USING DIFFERENT COMPILATION

OPTIONS.

Compiler options httpd keylog killproc simplespam udpflood sniff
S D S D S D S D S D S D

No parameters 144 144 133 133 149 149 135 135 136 136 129 129
Minimize Size 154 154 133 133 158 158 158 158 138 138 134 134
Optimize for Speed 144 144 133 133 149 149 1 1 136 128 129 124
Full Optimization 144 144 133 133 149 149 1 1 136 128 129 124
Only inline 144 144 133 133 149 149 135 135 136 136 129 129
Any suitable 144 144 133 133 149 149 135 135 136 136 129 129

Table III
NUMBER OF SAMPLES (OUT OF 10) MATCHING EACH BEHAVIORAL MODEL IN (S)TATIC AND (D)YNAMIC MODE, USING DIFFERENT COMPILERS.

Compiler httpd keylog killproc simplespam udpflood sniff
S D S D S D S D S D S D

VS 2003 10 10 10 10 10 10 10 10 10 10 10 10
VS 2005 10 10 10 10 10 10 10 10 10 10 10 10
VS 2008 10 10 10 10 10 10 10 10 10 10 10 10
Intel 10 0 0 0 0 0 0 0 0 0 0 0

Table IV
GENOTYPE MATCHING RESULTS ON IRC DATASETS.

Genotype Phenotype irc bots packed bots
B S D B ∩ S B S D B ∩ S

httpd backdoor 2014 636 635 279 840 425 425 264
keylog keylog 0 293 254 0 0 120 111 0
killproc killproc 0 400 400 0 4 62 62 0
simplespam spam 154 409 409 0 53 204 204 0
udpflood packetflood 0 374 342 0 0 139 122 0
sniff sniff 43 270 72 0 120 204 45 0

Table V
GENOTYPE MATCHING RESULTS ON PUSHDO AND ALLAPLE DATASETS.

Genotype pushdo allaple
B S D B ∩ S B S D B ∩ S

drop 50 54 54 46 0 0 0 0
spam 1 43 42 1 0 0 0 0
scan 23 0 0 0 58 61 61 58
rpcbind 5 9 0 1 62 61 61 58

execution in Anubis. The observed, dynamic behaviors in
Anubis are shown in columns marked with B.

Comparing the Anubis results with the static and dynamic
REANIMATOR results shows that, even with a limited set
of genotypes derived from a single malware binary, our
techniques can dramatically improve the number of malware
capabilities that are discovered. For instance, for the sniffing
behavior, Anubis detects 163 samples, while REANIMATOR
detects 474. For some of the other genotypes, the increase
in coverage is even more significant. For example, only four
binaries killed another process while executed in Anubis.

The B∩S column shows the number of samples matched
by both REANIMATOR and Anubis. That fact that, for
most behaviors, no samples were matched by both Anubis
and Reanimator may seem surprising at first. However, it
does not indicate false negatives on REANIMATOR’s part.
The genotype models detected by REANIMATOR correspond
to a single implementation of a certain behavior. Hence,
completely unrelated implementations would require addi-
tional models. The samples that included the simplespam
phenotype according to REANIMATOR, for instance, did
not send spam during Anubis analysis. This indicates that,
during analysis, the bot did not receive commands triggering
this behavior. The likely reason is that the spam functionality
modeled by the simplespam genotype is very primitive
compared to modern, template-based spam engines. As a
result, it is rarely (or never) used.

Table V shows results on the pushdo and allaple datasets.
For some genotypes, REANIMATOR does not provide a
significant additional coverage. These genotypes correspond
to behaviors that are performed by the malware every time it
runs, such as dropping a payload by Pushdo. Nevertheless,
we gain some additional coverage (8 samples) in cases where



a functionality was not successfully executed in Anubis. In
this specific case, this is because the Pushdo command and
control servers could not be reached. For the spam behavior,
REANIMATOR provides a significant increase in coverage.

E. Performance

In this section, we briefly discuss the performance of
the REANIMATOR genotype model extraction and genotype
model matching techniques.

• Genotype model extraction: Performing genotype model
extraction on a single, five-minute execution of a binary
in Anubis required under two minutes on standard desktop
hardware. Thus, it is feasible in practice to integrate model
extraction into the workflow of a large-scale malware anal-
ysis system such as Anubis.
• Genotype model matching: The genotype model matching
techniques used by REANIMATOR are efficient. Matching
against the entire 2.5GB irc bots dataset (with more than ten
thousand samples) took 2, 511 seconds in total on standard
desktop hardware. Hence, around .25 seconds were spent on
each binary. This performance is negligible compared to the
cost of dynamic analysis.

F. Limitations

In our experiments, we have seen that our genotype
matching technique is successful in statically analyzing
real-world malware code and finding dormant functionality.
However, malware authors could make it more difficult for
REANIMATOR to perform this matching step. For this, they
could develop evasion techniques specifically targeted at
our tool, such as semantics-preserving obfuscation of the
control flow graph. As an example, they could intersperse
their program’s entire CFG with a large number of spurious
nodes and edges. Such techniques could be countered by
performing genotype model matching using more powerful,
semantic-aware models [27].

On the other hand, malware authors are more likely to pre-
fer generic evasion techniques that are capable of defeating
a wide range of analysis and detection approaches. This goal
can be achieved by advanced packing techniques (such as
emulation-based packing and conditional code obfuscation)
that cannot be easily defeated using generic unpacking meth-
ods. While recent work has addressed emulation-based pack-
ing [20], conditional code obfuscation [21] can, in certain
settings, provide strong guarantees that the code cannot be
analyzed statically. This is a limitation that REANIMATOR,
or any other tool relying on static analysis, faces.

Another limitation of our approach is that, to generate
a genotype model, REANIMATOR needs to observe the
execution of the corresponding behavior in at least one
dynamic analysis run. Therefore, behavior that is never
executed inside our sandbox cannot be detected. As a
consequence, similar to other dynamic analysis approaches,
REANIMATOR can be defeated by malware that detects

the analysis sandbox and refuses to run. Furthermore, it
cannot detect time- or logic- bombs until they are triggered
by at least one sample. However, it may be possible to
combine our technique with other approaches for improving
the coverage of dynamic analysis, such as multiple path
exploration [4]. Using REANIMATOR, the insight provided
by applying such computationally-expensive techniques to
a single malware execution could be leveraged to provide
information for other samples.

VI. RELATED WORK

A number of related works have explored static and
dynamic approaches to analyze malware samples. As we
observed in Section I, one of the motivations to develop
REANIMATOR is that dynamic analysis suffers from the
weakness of partial coverage. To counter this, previous
research has proposed either to run samples multiple times
by crafting inputs that invert the outcomes of conditional
branches (possible triggers) [3], [4] or simply to force
execution along a different path [5]. Unfortunately, using
such techniques is potentially expensive, as the number of
paths that require analysis can grow exponentially. The path
explosion problem similarly affects dynamic software testing
systems such as EXE [28], DART [29], and SAGE [30],
which use symbolic execution to execute more code paths
for the purpose of finding more bugs.

Structural characteristics, and in particular CFGs, have
been extensively used in static analysis. Besides the results
in [9], which we leveraged in this work, a similar approach
is presented in [31]. The difference is that the authors of [31]
apply normalization techniques to reduce the effects of well-
known code mutation techniques. After normalization, they
use inter-procedural CFGs, linking together the CFGs of
each function of a program.

Structural code characteristics have also been used to
recognize similarities between program binaries. For exam-
ple, the authors of [32] and [33] both define a distance
function over a set of malware samples that is based on
their function call graphs. In [32], the authors propose
using such a distance function to classify malware and to
create a phylogeny of malware binaries. SMIT [33] also
uses properties of the function call graphs to implement an
efficient nearest-neighbor search on large malware datasets.
Function call graphs can provide an overall view of an entire
binary, and are, therefore, suitable for globally comparing
binaries. However, these techniques are typically not well-
suited for detecting the presence of a small code fragment
in a larger program. Moreover, they do not associate any
semantics (information about phenotypes) with call graphs.

Besides using control flow or instruction graphs, other
formalisms have been used to identify viral code sequences.
In [11], model checking is used to identify parts of a pro-
gram that implement a previously specified malicious code
template. This combats common obfuscation techniques.



The technique was later extended in [27], allowing more
general code templates and using advanced static analysis
techniques. Model checking is used also in [34] to semanti-
cally identify malware using a temporal logic specification.
All of these systems share the limitation that models of
each behavior instantiation have to be specified manually.
REANIMATOR, in contrast, only requires generic behavioral
models (phenotypes) of what constitutes a malicious behav-
ior, and is then capable of automatically identifying code
that implements that behavior (the genotype). Furthermore,
these techniques are largely orthogonal to our work. Once
REANIMATOR has identified a genotype, it could potentially
make use of some of these more sophisticated (and computa-
tionally costly) detection techniques for genotype matching.

Similar to our system, AGIS [35] uses a combination of
dynamic and static techniques to analyze malware. More
precisely, the system uses static analysis to identify instruc-
tion sequences that lead to system calls that are associated
with malicious activity. These instruction sequences are then
used as infection (detection) signatures. A significant differ-
ence to our system is the fact that AGIS simply includes
into signatures all instructions that lead to interesting system
calls. Our system, on the other hand, attempts to extract
only those parts of the code that are actually responsible for
the observed behavior. This is achieved by REANIMATOR’s
filtering and germination steps.

Plagiarism detection through source code analysis is a
well-explored theme. Besides MOSS [25], other significant
work in this area includes CCFinder [36], Dup [37], and CP-
Miner [6]. Some tools are based on textual analysis, compar-
ing the lines of code. Others compare the token sequences
of lines [36], [37], or tree-representations of the code [38].
Others, more interestingly, use the program dependency
graphs of code (i.e., control and data flow dependencies of
functions) [39], something conceptually close to the use of
CFGs on assembly code. Plagiarism detection on binaries
is less developed. In [26], the authors have extended a
previous system [38] to work on assembly instructions,
through some normalization techniques and devising novel
models to compactly represent information related to binary
instructions. Again, no semantic information is associated
with detected clones, and the approach is much less robust
than ours with regards to small code changes, for example,
due to different compiler options (as discussed in Section V).

VII. CONCLUSIONS

Dynamic malware analysis systems provide important
information about the capabilities of malicious code found
in the wild. However, they typically only execute a single
execution path. As a result, these systems often fail to
observe a significant fraction of the entire functionality that
a malware sample implements.

In this paper, we present REANIMATOR, a novel system to
identify dormant functionality in malware. The main insight

behind our system is that we can leverage a single observa-
tion of malicious behavior in one malware sample to detect
the same functionality in other malware programs (even
when they do not exhibit this behavior). In order to achieve
this goal, our system operates in three steps. First, we use
simple rules to identify security-related behavior (pheno-
types) in the output and the events that a malware sample
produces during dynamic analysis. Second, we automatically
locate and model the code (genotype) that is responsible for
this behavior. Third, we reuse previously-generated genotype
models for a specific behavior to statically detect similar
code in malware that does not exhibit this behavior during
the dynamic analysis.

Our approach allows us to unveil dormant functionality in
malware programs. Thus, we can significantly increase our
knowledge about the capabilities of malicious code when
compared to the results delivered by dynamic analysis alone.
Our experiments demonstrate that the generated models
accurately capture code parts (genotypes) that are respon-
sible for a diverse set of malicious behaviors. Moreover,
they show that REANIMATOR can significantly increase the
coverage of dynamic analysis systems.
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