
Context Oriented Programming in Highly Concurrent
Systems ∗

Carlo Ghezzi
DEEPSE Group

DEI, Politecnico di Milano
Piazza L. Da Vinci, 32

Milano, Italy
carlo.ghezzi@polimi.it

Matteo Pradella
DEEPSE Group

CNR IEIIT-MI
Via Golgi, 42
Milano, Italy

pradella@elet.polimi.it

Guido Salvaneschi
DEEPSE Group

DEI, Politecnico di Milano
Piazza L. Da Vinci, 32

Milano, Italy
salvaneschi@elet.polimi.it

ABSTRACT
Context Oriented Programming (COP) allows modulariza-
tion of programs according to the cross-cutting concern of
contexts. Context depending features are grouped in layers
which can be activated at run time by triggering the associ-
ated behavioral variations.

COP extensions have been provided for different languages.
However all of them enforce a thread, shared-memory based
concurrency model. In this paper we discuss how the COP
paradigm can be applied to message-based concurrent sys-
tems which support the agents paradigm. The discussion is
supported by the case of ContextErlang, our COP-inspired
contextual version of Erlang.

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-oriented
Programming ; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Languages, Design

Keywords
Context, Self-adaptive software, Context-oriented program-
ming, Erlang, OTP platform

1. INTRODUCTION
Over recent years, SMP architectures became very com-

mon. After a phase in which more computational power was
obtained leveraging on an increase of the processor clock
frequency, the increase of clock rate slowed down due to
technological problems, and processor vendors have turned
towards multi-core processors for gaining processing power.

∗This research has been funded by the European Commu-
nity’s IDEAS-ERC Programme, Project 227977 (SMSCom).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP’10, June 22, 2010, Maribor, Slovenia
Copyright 2010 ACM ...$10.00.

Modern desktop hardware is usually provided with two or
four cores, while it is expected that this number grows up
to tens or hundreds in years [11]. As expected, applications
are becoming increasingly concurrent in order to effectively
take advantage of the new computational power. However
the traditional support that mainstream programming lan-
guages provide, which is based on threads and locks, is ap-
pearing inadequate more and more. Concurrent program-
ming with threads and locks is in general cumbersome and
error-prone.

The Actor Model, proposed by Hewitt [10] and improved,
among others, by Agha [5] takes a different approach to
concurrency. Actors have a behavior and a mailbox. Upon
receiving a message, the behavior of the actor is executed,
while messages are buffered in the mailbox. Actors com-
municate (only) through asynchronous messages; i.e. after
sending a message the actor continues with its execution.
This means that there is no shared memory between actors,
which greatly simplifies coding concurrent applications.

In the last few years, an increasing interest has centered
around languages that adopt the actor model, such as Er-
lang. Moreover, many recently developed languages such as
Scala [4], F# [3] and Go [2], enforce this paradigm.

COP is a recent programming technique which addresses
the problem of adapting software behavior dynamically to
the current execution context by providing suitable language
abstractions. Starting from the pioneering work on the Lisp
extension ContextL by Costanza [7], several COP extensions
have been developed for different languages, such as Con-
textPy and PyContext for Python, ContextS for Squeak,
ContextR for Ruby, and COP extensions for JavaScript,
Groovy, Scheme and Java. Complete references for these
languages can be found in [6].

Despite the trend mentioned above, COP extensions have
been provided only for languages whose concurrency model
is based on shared memory and locks. In this paper we dis-
cuss how the COP can be applied to languages that leverage
on the actor model. In Section 2 the main aspects of COP
layers are analyzed, in Section 3 we discuss the reasons why
the features of layers explored so far do not fit the actor
model, in Section 4 we expose a possible alternative, and in
Section 5 we briefly present our COP variant of an agent-
based language.

2. LAYERS IN COP
Layers are the abstraction used to modularize cross-cutting

behavioral variations in context oriented languages. Lay-

ers are sets of partial program definitions implementing the
functionalities of a behavioral variation: when a layer is ac-
tivated, the partial definitions contained in it start having
influence on the behavior of the program.

We point out three specific aspects of layers: declaration
strategies, activation, and relationship with concurrency:

Layer declaration. Two layer declaration strategies have
been explored so far in literature: class-in-layer and layer-
in-class. In the class-in-layer pattern layers are defined out-
side the lexical scope of the code unit (usually classes) for
which they provide behavioral variations. In the layer-in-
class pattern the declaration of a layer is in the lexical scope
of the module it augments.

Layer activation. In COP languages layer activation
can be obtained through the use of ad hoc language primi-
tives such as (with-active-layers ({layer-name}*) body)

in ContextL, with activelayer(layer-name) in ContextPy,
and with(LayerList){BlockStatement*} in ContextJ. Layer
activation is dynamically scoped: activated layers affect both
direct and indirect function invocations. The only exception
to the dynamically scoped activation is given by global acti-
vations primitives. In ContextL the ensure-active-layer

function enables global activation of layers without dynamic
scope, while in the Ambience programming language [9] a
context manager is in charge of updating the global context
in real time.

Concurrency. Layer activation usually has an effect that
is restricted to the thread that performs the activation. This
choice is motivated by the need for avoiding race conditions
and conflicts between different threads. However some lan-
guages have primitives that allow global layer activation for
all threads without dynamic scope. This is the case of Ambi-
ence in which the context manager runs in separate thread,
and in ContextLisp with the ensure-active-layer function
mentioned above. With the exception of global activation
primitives, layer activation is a synchronous operation: the
thread calls a with(Layers) Block primitive and after the
layer activation, the following code block is executed.

3. CRITICISM
In highly concurrent systems, a high number of processes

in the form of agents interact with each other by exchanging
messages. What makes these systems different with respect
to the traditional shared memory model is that processes are
not simply spawn when a parallel task must be carried on,
but processes become a unit that structures programs. In
fact, in languages that heavily leverage on agents as a pro-
gramming paradigm, such as Erlang, the process becomes
an abstraction that has a modularization/encapsulation role
which is similar to the one of objects in object oriented lan-
guages. In a certain sense, at runtime, the constitutive ele-
ments of an application are processes rather than objects.

In this scenario it seems natural that variations are acti-
vated on a per-process basis so that the behavior of each sin-
gle process can be modified. However, dynamically scoped
variation activation do not seem to be the most suitable
mechanism.

Take as an example a server; each time a client connects, a
user process is spawned which serves all the successive client
requests. This process is implemented as a server-side agent
that interacts with the other user processes representing dif-
ferent clients or with other agents that encapsulate resources
inside the server. It is natural that the context of the process

is somehow related to the status of the client-side user who
interacts with it. If the client is connected using a mobile
device, the bandwidth availability can be limited and it can
be useful to adopt a protocol which limits the amount of
data transmitted, maybe at the price of reducing graphical
effects or other not essential features.

In the COP paradigm this can be achieved by activating
the proper variations on the user process so that it inter-
acts with the client using a lighter protocol. Dynamic scope
activation as it is supposed by current languages, does not
fit well this case. First, we wish the activation of a layer
to be active indefinitely, until a new context change triggers
activation of a new layer. Second, we wish to be able to rep-
resent the common case in which the process that triggers
a layer activation is not the same on which the variations
are activated. In concurrent systems with many interacting
agents this is a common condition if the adaptation is per-
formed as a response to external conditions. For example an
environment monitoring process can decide that some varia-
tions must be activated on certain other processes. Dynamic
scope activation limits the variation effect to a set of opera-
tions which are in the fixed scope of the activation. Moreover
the variation activation with dynamic scope is synchronous,
while a request from another process can come in an asyn-
chronous manner.

In the example above a temporary bandwidth reduction
can be detected by a process which acts as a net monitor.
After detection, the user process must be informed of the
variation activations that must be performed. This type of
activation is asynchronous with respect to the calls that the
user agent receives from all the other processes. Consider
the processes inside the server that manage the resources
requested by the user processes. These processes can keep
resources in memory, reducing the response time, or in case
of heavy load of the server they can keep the resources on
disk, increasing the time required to retrieve the data, but
freeing as much memory as possible. It is reasonable that a
process acts as a system monitor, keeping track of the mem-
ory consumption. When the free memory goes below a fixed
bound, the system monitor process must inform the other
processes that they have to activate a save_memory varia-
tion. These processes are not waiting for a variation activa-
tion, but they receive messages coming from other processes
and the variation activation is asynchronous with respect to
these requests.

4. VARIATIONS IN CONCURRENT SYSTEMS
Since in agent-based systems inter process communica-

tion is based on messages, the same mechanism can be ap-
plied for variation activation and deactivation. Per-process
activation can be obtained by implementing context-aware
agents that react to certain special context-related messages
activating or deactivating their variations. The agents keep
the active variations as an internal state, and the compu-
tation triggered by successive standard messages is affected
by the presence of the variations. Variation activation has
indefinite scope in the sense that from activation onwards
the partial program definitions inside the variation affect
the program behavior until a different variation activation
occurs.

An interesting issue concerns which paradigm between
the class-in-layer and the layer-in-class applies better to the
agent model. Our experience with ContextErlang (see Sec-

tion 5) showed that a hybrid technique can give the advan-
tages of both solutions.

A useful approach in structuring complex COP agent-
based applications is to reason in term of components. Each
component groups the modules that are executed by an
agent, one with the basic behavior, and the other which are
variations, i.e. sets of partial program definitions that can
be activated on the agent. With this approach it is easier to
raise the level of abstraction in structuring complex applica-
tions by considering each component as the basic constitu-
tive unit. This makes it natural to think of a component as
the equivalent of a class in an OO language and the varia-
tion modules as internal to the component, which is typical
of the layer-in-class paradigm. Here the advantage is the
ability of encapsulating in a component the basic behavior
of an agent of a certain type and its variations.

It is useful that each component-specific variation is im-
plemented as a single module which is proper of the class-
in-layer approach. The main advantage of the class-in-layer
model is adaptability in an evolving system. Being imple-
mented as a single module, variations can in fact follow the
loading rules of modules, such as being added and loaded at
run time in the system, if the language supports this feature.
For example, ContextErlang leverages this feature in order
to achieve a great flexibility. In a distributed system such as
the case of many interacting network nodes, a variation can
be sent to a remote node and activated, so that the system
can adapt to conditions that were not known when it was
deployed.

5. CONTEXTERLANG
ContextErlang [8] is COP-inspired contextual extension

to Erlang [1], a single assignment, dynamic typed, func-
tional language with an actor model for concurrency and
very lightweight processes.

Practically any real-world Erlang application is based on
the OTP platform which is a library and a set of proce-
dures for structuring fault-tolerant, large-scale, distributed
applications. Since many processes enact similar patterns,
such as serve requests, handle events, or monitor other pro-
cesses, OTP generalizes these common patterns and gives
a ready implementation of the generic structure (the behav-
ior), while the user needs to implement only the specific
part that exports a predefined set of functions (the callback
module). This kind of code structuring makes programs eas-
ier to understand and prescribes a general architecture that
should be common to all OTP applications.

In the case of a gen_server (a generic process that serves
requests), the behavioral module provides functionalities for
message passing, error handling and fault-tolerance, while
the callback module implements the actual actions the server
has to perform when a request is issued. While the callback
module implements specific functionalities and it is directly
influenced by a context change, the functionalities associ-
ated with the generic module are in general not context-
dependent.

A ContextErlang application is designed as a set of com-
ponents, each made of a single behavior module and sev-
eral callback modules. Each callback module is used to im-
plement a behavioral variation for the component and it is
bound at run time to the behavior module; indeed, these dif-
ferent callback modules are used to implement variations. A
variation contains the declarations of all the functions that

implement a behavioral change; when the variation is acti-
vated (i.e. the variation is dynamically bound to a context-
enabled behavior), these functions take effect overriding the
functions defined in the basic callback module. As said be-
fore, a variation is activated on a specific process, which
means that each context-enabled process has its set of ac-
tive variations. Since more than one variation at a time can
be active on an agent, active variations interact in changing
the behavior of a component.

Variations are activated in a certain order, so that they
conceptually create a stack. When the agent receives a call
request message, the stack is searched in the top-of-stack
variation: if the search is successful then the call is per-
formed, otherwise the search goes on over the subsequent
variations down along the stack. If a proceed() call is per-
formed from inside the called function in a variation, it is
called the function in the subsequent eligible variation in the
variations-stack. This is a simple mechanism for composing
variations, inspired by other context-oriented languages.

An interesting feature of ContextErlang, based on the dy-
namic code loading capabilities of Erlang, is the variation
transmission. With it, variations can be provided to the
components of a remote Erlang node by sending and dy-
namic loading them so that those components can be en-
abled to react to unforeseen situations.

6. REFERENCES
[1] http://erlang.org. Reference website for Erlang.

[2] http://golang.org/. Website for the GO language.

[3] http://research.microsoft.com/fsharp.

[4] http://www.scala-lang.org/.

[5] G. Agha. ACTORS: A Model of Concurrent
Computation in Distributed Systems. The MIT Press:
Cambridge, MA, USA, 1990.

[6] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke,
and M. Perscheid. A comparison of context-oriented
programming languages. In COP ’09: International
Workshop on Context-Oriented Programming, pages
1–6, New York, NY, USA, 2009. ACM.

[7] P. Costanza. Language constructs for context-oriented
programming. In In Proceedings of the Dynamic
Languages Symposium, pages 1–10. ACM Press, 2005.

[8] C. Ghezzi, M. Pradella, and G. Salvaneschi.
Programming language support to context-aware
adaptation - a case-study with Erlang. Software
Engineering for Adaptive and Self-Managing Systems,
International Workshop, ICSE 2010.

[9] S. González, K. Mens, and P. Heymans. Highly
dynamic behaviour adaptability through prototypes
with subjective multimethods. In DLS ’07:
Proceedings of the 2007 symposium on Dynamic
languages, pages 77–88, New York, NY, USA, 2007.
ACM.

[10] C. Hewitt, P. Bishop, and R. Steiger. A universal
modular actor formalism for artificial intelligence. In
IJCAI’73: Proceedings of the 3rd international joint
conference on Artificial intelligence, pages 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[11] M. D. Hill and M. R. Marty. Amdahl’s law in the
multicore era. Computer, 41:33–38, 2008.

